FIA Data Distribution Team Systems Architecture

Ty Wilson, USDA Forest Service, NCRS

May 2004

Customers have used FIA data in a wide array of software applications. These applications have been developed under a variety of programming models and languages. Some have been developed for the Web while others were built for the desktop. Several were built using proprietary technology while others are open-source. Due to security constraints, internal applications often access data through one set of channels while external applications use a different set. Many were built to stand alone for a particular purpose, with little thought given to how they might be integrated with other applications. In most cases, significant resources were devoted to creating and maintaining these applications.

Traditionally, integration of an organization’s applications is accomplished through adoption of common technologies. Under this model, programmers agree upon programming frameworks and languages as well as a set of programming conventions. If well executed, this generally eliminates interoperability issues between applications and simplifies maintenance. However, this strategy requires careful planning, specialized training, and a strong commitment to one particular set of technologies. If existing applications must be migrated to other technologies or if new technologies emerge that make future migration likely, the costs would likely be considerable.

The Internet provides an extreme example of an environment with diverse technologies in place, each with considerable resource investments, where the likelihood of finding a technological solution to the interoperability problem is very low. In this case, interoperability is more easily accomplished by means of standards. The Internet uses standards for resource addressing (e.g. IP), transmitting packets of data (e.g. TCP), sharing Web resources (e.g. HTTP), sharing files (e.g. FTP), and describing data (e.g. XML) to name but a few. There are numerous technologies available for implementing each of these standards. In general though, common technologies are not required for the Internet to function, only common standards.

Not surprisingly, the Internet also has standards for sharing applications. These standards fall under the general heading of Web Services. A systems architecture built around Web Services is called a Service Oriented Architecture (SOA). Lawrence Wilkes of the technology think-tank CBDI, in his article “ROI - The Costs and Benefits of Web Services and Service Oriented Architecture”, describes numerous benefits of an SOA. One of the most important is the fact that Web Services provide “a simplified mechanism to connect applications regardless of the technology or devices they use, or their location.” This opens up the possibility of reusing large blocks of existing code by writing Web Services “adapters” that permit them to plug into a loosely coupled SOA. Web Services fit naturally into the 3-tier model of application development that breaks an application into data layer, logic layer, and presentation layer. This facilitates the modularization of code into reusable blocks that can be hooked together in any number of ways. Also, because of the emphasis on open standards, like XML-RPC and SOAP for the messaging layer, users are not tied to proprietary technologies and have a choice of vendors. Furthermore, Web Services are built to use standard Internet protocols which means they can run on the existing networking infrastructure for both internal and external customers. And in their most advanced form, Web Services are fully self-describing (through WSDL) and permit automated discovery of service providers (through UDDI).

In the last few years, the concept of Web Services has really taken hold in industry. What had simply been a concept has become a reality as major players such as Microsoft, IBM, and Oracle have agreed upon and begun building software around these emerging standards. Three of the IT magazines to which I subscribe, Oracle, GeoWorld, and GeoSpatial Solutions, have each devoted featured articles to the emergence of Web Services and its impact on distributed computing in general and geospatial processing in particular.

There are a variety of FIA applications that could be reused, modularized, and provided as Web Services. The most obvious are related to data access. Oracle Stored Procedures that summarize FIA data would be excellent candidates for inclusion in an SOA. Internal users would still have access to these procedures through standard database tools. Both internal and external users could access the same procedures as Web Services over HTTP. Other applications include statistical procedures for calculating post-stratified population estimates and sampling errors. More sophisticated statistical modeling and graphing capabilities could be provided through RSOAP, an extension to the R Statistics Package that provides access to a rich statistical toolset through Web Services. Also, the Open GIS Consortium has begun exploring porting some of their existing mapping standards, such as WMS, WFS, and WCS, to Web Services.

Because Web Services are based on standards and not technology, they can be written in most any language, including C, Java, and Visual Basic. Client applications of these Web Services could be both Web and desktop applications. For example, an application would use the same Web Services whether it runs as Javascript in a Web browser or as Visual Basic for Applications in Microsoft Excel. Web Services are both language and platform independent. Current applications that would be good candidates for clients of Web Services include Ramiform (a Web-based mapping application) and the RPA Data Wiz (a desktop reporting and mapping application). A further benefit is that external application developers could be given access to these Web Services in order to build their own clients. In this way we continue to foster external application development without having to incorporate and maintain these applications ourselves. We need only maintain the Web Services.

In summary, by transitioning to Web Services FIA would accrue many benefits. Much legacy code could be reused by writing “adapters” that let these applications plug into a Service Oriented Architecture, thereby preserving our historical investments. This architecture permits a more complete integration of application code written in numerous languages, a situation that clearly exists in FIA. Since Web Services are based on standards and not technology, we would not be locked into a particular vendor. As the standards mature, there will be more and better tools for creating Web Services for numerous applications. We need create only one set of Web Services for both Web and desktop client applications. Also, Web Services provide an easy-to-maintain means of serving the data access needs of our external application developers.

Web Services

R (Stats)

?

?

FIA Applications

Desktop Applications

Web Applications

P3 Lab

Historical P3

Owners

TPO

RPADB

FIADB

NIMS

Raster Images

Vector Shapefiles

Oracle Spatial

ArcSDE on Oracle

OGC WMS

OGC WFS

Other Applications

Attribute Data

Spatial Data

PAGE
1

